The Stress-Parameter, Geometrical Spreading Correlation

David M. Boore

Gail M. Atkinson

USGS National Seismic Hazard Map (NSHMp) Workshop on Ground Motion Prediction Equations (GMPEs)

for the 2014 Update

December 12-13, 2012

I-House, Berkeley, CA

Plus two additional topics

- The measure of ground motion used by NGA-West2
- Computing response spectra for low-kappa, low-sample rate records (a teaser only)

Δσ-attenuation model correlation

"When we try to pick out anything by itself, we find it hitched to everything else in the universe"—John Muir

Note separation of motion by azimuth; stress fits are for all data combined.

Note dependence of stress on Q model for same geometrical spreading (215 bars for A04 Q model, 1026 bars for BS11 Q model)

Note generally poor fit of T=2 s PSA

Use eGf to resolve ambiguity

 Objective: Discriminate between attenuation models that fit observed short-period response spectra

Strategy:

- Generally too few observations at close distances to discriminate
- Remove path effect by using empirical Green's function (eGf)
- Find range of stress drops consistent with eGf
- Find range of attenuation models fit to response spectra consistent with this range of stress drops

• Limitations:

- Spectra too noisy at low frequencies to allow a good determination of the corner frequency of the larger event
- Azimuthal dependence complicates analysis
- Use both H and V motions

Event information for the Val des Bois Earthquake

	Year	M	D	н	h(km)	Mn	M*
1	2010	6	23	17	16.4	5.8	5.07
2	2010	6	23	23	22.9	3.3	
9	2010	6	26	5	18.8	2.6	

 $\Delta \sigma$

Note azimuthally dependent PSA

Δσ≈400bars only consistent with 1/R

1/R^{1.3} , Rt=60 km, not consistent with T=2 s data

Conclusions (stress-path correlation)

- Need consistency between model used to derive parameters and forward predictions using those parameters
- Pronounced azimuthal variation in motions around well-recorded ENA events
- eGf analysis has potential to resolve ambiguity due to stress-path correlation, but limited data bandwidth at low frequencies and azimuthal variations complicate the analysis

Relations between GM_AR, GMRotI50, and RotD50

David M. Boore

Presented at the

USGS National Seismic Hazard Map (NSHMp) Workshop on Ground Motion Prediction Equations (GMPEs) for the 2014 Update

December 12-13, 2012 I-House, Berkeley, CA

Computing RotD50

- Project the two as-recorded horizontal time series into azimuth Az
- For each period, compute PSA, store Az, PSA pairs in an array
- Increment Az by $\delta\alpha$ and repeat first two steps until Az=180
- Sort array over PSA values
- RotD50 is the median value
- RotD00, RotD100 are the minimum and maximum values
- NO geometric means are used

To convert GMPEs using random component as the IM (essentially, the as-recorded geometric mean), multiply by RotD50/GM_AR

To convert GMPEs using GMRotI50 as the IM (e.g., 2008 NGA GMPEs), multiply by RotD50/GMRotI50

References

Boore, D. M., J. Watson-Lamprey, and N. A. Abrahamson (2006). Orientation-independent measures of ground motion, *Bull. Seismol. Soc. Am.* **96**, 1502-1511.

Boore, D. M. (2010). Orientation-independent, non geometric-mean measures of seismic intensity from two horizontal components of motion, *Bull. Seismol. Soc. Am.* **100**, 1830-1835.

Conclusions (Ground-motion intensity measure)

- WNA-E should use RotD50 for consistency with NGA-West2
- A factor of 1.04 for T=1 s. Is this important?
- Converting GMPEs in terms of random horizontal component, geometric mean, or GMRotI50 to RotD50 can be done using correlations shown in the figure (although these were derived for NGA-W flatfile should compare GM_AR, GMRotI50, and RotD50 for CENA data)

Response Spectra for Low Sample Rate Data: A Simulation Study

An issue discovered by Norm Abrahamson

Douglas, J. and D. M. Boore (2011). High-frequency filtering of strong-motion records, *Bull. Earthquake Engineering* **9**, 395—409.

Representative Fourier acceleration spectra (the first of 10 simulations) for unfiltered and filtered time series computed for a **M** 5 earthquake at 50 km, assuming model parameters appropriate for eastern North America, except for .

Average of 10 ratios of response spectra, for simulations spanning the range of used in this study, plotted vs frequency for ease of comparison with the FAS in Figure 1.

Conclusions (Computation of PSA)

- Standard method for computing PSA can lead to significant bias (underestimation) of response spectra for frequencies less than the antialiasing filter frequency
- This is of most concern for situations where high-frequencies are little attenuated (low-kappa sites, close distances) and low-sample rate dataloggers are used (thus leading to abrupt changes in spectral level near the anti-aliasing corner frequency)

Conclusions (Computation of PSA)

- Guidelines should be developed that can be used to decide on the usable short-period limit of the PSA
 - Simulation study should be extended to consider more M,
 - Filtering, decimation, resampling steps should be done with data also
- Reprocess all records with resampling

End

eGf and PSA inversions for three earthquakes:

- Val des Bois
- Saguenay (eGf only)
- •Riviere du Loup

Saguenay

Val des Bois

Riviere du Loup

Event information for the Riviere du Loup Earthquake

												$\Delta\sigma$
event	Year	Мо	Day	Hour	Min	Sec	eve-lat	eve-lon	Depth(km)	Mn	M*	(bars)
1	2005	3	6	6	17	49	47.75	-69.73	13.3	5.4	4.67	512
2	2005	3	11	0	36	23	47.760	-69.730	12.7	2.3	2.1	279
	2003	3	11	U	30	23	47.700	-09.730	12.7	2.3	2.1	219
3	2005	3	6	8	55	42	47.750	-69.730	13.9	2.1	2.0	312
4	2005	5	17	7	17	50	47.750	-69.730	14.4	2.1	2.0	342
5	2005	5	5	2	21	21	47.750	-69.730	14.3	2.0	1.8	441
6	2005	3	6	15	12	23	47.760	-69.730	15.1	2.0	2.0	75

Δσ≈400bars only consistent with 1/R

1/R^{1.3} , Rt=60 km, not consistent with T=2 s data Not enough non-SW stations for eGf analysis

1/R^{1.3}, Rt=60

km, not

T=2 s data

